3 research outputs found

    Optimal accelerometer placement for fall detection of rehabilitation patients

    Get PDF
    The development of health monitoring system using wearable sensor has lots of potential in the field of rehabilitation and gained lots of attention in the scientific community and industry. The aim and motivation in this field are to focus on the application of wearable technology to monitor elderly or rehab patients in home-based settings to reduce resources and development cost. The wearable sensor such as accelerometer used to emphasise the clinical applications of fall detection during rehabilitation treatment. This paper is intended to determine the optimal sensor placement especially for lower limb activity during rehabilitation exercise. Accelerometer data were collected from three different body locations (hip, thigh, and foot). The lower limb activities involve normal movements such as walking, lifting, sit-to-stand, and stairs. Other unexpected activity such as falls might occur during normal lower limb exercise movement. Then, acceleration data for various lower limbs activities was classified using k-NN and SVM classifier. The result found that the hip was the best location to record data for lower limb activities including when fall occurs

    Optimal Accelerometer Placement for Fall Detection of Rehabilitation Patients

    Get PDF
    The development of health monitoring system using wearable sensor has lots of potential in the field of rehabilitation and gained lots of attention in the scientific community and industry. The aim and motivation in this field are to focus on the application of wearable technology to monitor elderly or rehab patients in home-based settings to reduce resources and development cost. The wearable sensor such as accelerometer used to emphasise the clinical applications of fall detection during rehabilitation treatment. This paper is intended to determine the optimal sensor placement especially for lower limb activity during rehabilitation exercise. Accelerometer data were collected from three different body locations (hip, thigh, and foot). The lower limb activities involve normal movements such as walking, lifting, sit-to-stand, and stairs. Other unexpected activity such as falls might occur during normal lower limb exercise movement. Then, acceleration data for various lower limbs activities was classified using k-NN and SVM classifier. The result found that the hip was the best location to record data for lower limb activities including when fall occurs

    Semantic object detection for human activity monitoring system

    No full text
    Semantic object detection is significant for activity monitoring system. Any abnormalities occurred in a monitored area can be detected by applying semantic object detection that determines any displaced objects in the monitored area. Many approaches are being made nowadays towards better semantic object detection methods, but the approaches are either resource consuming such as using sensors that are costly or restricted to certain scenarios and background only. We assume that the scale structures and velocity can be estimated to define a different state of activity. This project proposes Histogram of Oriented Gradient (HOG) technique to extract feature points of semantic objects in the monitored area while Histogram of Oriented Optical Flow (HOOF) technique is used to annotate the current state of the semantic object that having human-and-object interaction. Both passive and active objects are extracted using HOG, and HOOF descriptor indicate the time series status of the spatial and orientation of the semantic object. Support Vector Machine technique uses the predictors to train and test the input video and classify the processed dataset to its respective activity class. We evaluate our approach to recognize human actions in several scenarios and achieve 89% accuracy with 11.3% error rate
    corecore